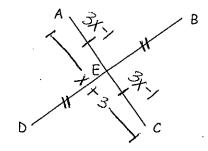
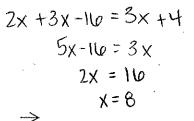
Date: ______ Period:_____

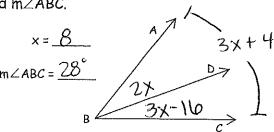

1. W, R, and S are collinear, and W is between R and S. RS = 7n + 8, RW = 4n - 3, and WS = 6n + 2, find the value of n and WS.

F W S F 7n+8


- 4n-3+6n+2=7n+8 3n-1=8 -7n -7
- 2. In the following figure, \overline{AC} and \overline{BD} bisect each other at E. Given that $\overline{AC} = x + 3$ and $\overline{EC} = 3x 1$, find \overline{EA} .

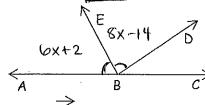
$$3x-1+3x-1 = x+3$$

 $6x-2=x+3$
 $5x-2=3$
 $5x=5$
 $x=1$


$$EA = 3(1) - 1$$

= 3-1 $EA = \frac{2}{3}$
= 2

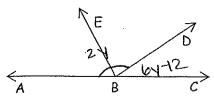
3. If $m\angle ABC = 3x + 4$, $m\angle ABD = 2x$, and $m\angle DBC = 3x - 16$, find x and $m\angle ABC$.



$$mLABC = 3(8)+4$$

= 24+4
= 28

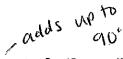
 $m \angle ABE = 50^{\circ}$


a. BE bisects $\angle ABD$. If $m\angle ABE = 6x + 2$ and $\angle DBE = 8x - 14$, find $m\angle ABE$.

4.

$$lox + 2 = 8x - 14$$
 $mLABE = lo(8) + 2$
 $2 = 2x - 14$ $= 48 + 2$
 $16 = 2x$ $= 50^{\circ}$
 $8 = x$

b. \overrightarrow{BE} bisects $\angle ABD$. Given that $m\angle \overrightarrow{ABD} = 2y$ and $m\angle DBC = 6y - 12$, find $m\angle DBC$.



$$6y-12+2y=180$$

 $6y-12=180$
 $8y=192$
 $y=24$

- $m\angle DBC = \frac{132^6}{132^6}$ $= 132^6$
- c. BE bisects $\angle ABD$. If $m\angle ABE = 9x 1$ and $m\angle DBC = 24x + 14$, find $m\angle EBD$.

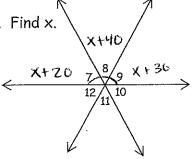
$$9x-1+9x-1+24x+14=180$$
 $42x+12=180$
 $42x+12=180$
 $42x=168$
 $42x=168$
 $= 9(4)-1$
 $= 35^{\circ}$

12. $\angle 1$ is the complement of $\angle 2$. $m\angle 1 = 4x - 3$ and $m\angle 2 = 15x - 2$. Find $m\angle 2$.

$$4x - 3 + 15x - 2 = 90$$
 $19x - 5 = 90$
 $19x = 95$

$$m \angle 2 = \boxed{13}$$

 $\times = 10$


$$19x - 5 = 90$$

 $19x = 95$

$$X = 5$$

13. \overrightarrow{RS} bisects \overrightarrow{AB} at M. If $\overrightarrow{AM} = 17$ and $\overrightarrow{AB} = 3x + 7$, find x.

14. In the picture to the right, $m\angle 7 = x + 20$, $m\angle 8 = x + 40$, and $m\angle 9 = x + 30$. Find x.

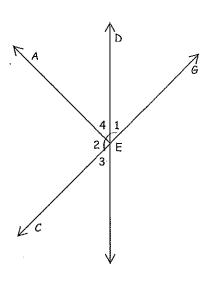
RT=11(2)

15. S is the midpoint of RT. RT = 11x and ST = 9x - 7. Find RT.

x = 2

a. $m \angle 3 = 32$, find $m \angle CED$.

b. If $m\angle 2 = 6x - 20$, $m\angle 4 = 3x + 18$, and $m\angle CED = 151$, find the value of x.


$$6x - 20 + 3x + 18 = 151$$

$$9x - 2 = 151$$

 $9x = 153$

$$\times = 1$$

c. If $m\angle 1 = 49 - 2x$, $m\angle 4 = 4x + 12$, and $m\angle 2 = 15x$, find $m\angle 4$. mc4=4(7)+12

$$49-2x + 4x + 12 + 15x = 180$$

m24 = 40°

Match the term on the left with the definition on the right.

L 17. Angle

E 18. Collinear

H 19. Ray

C 20. Segment

B 21. Vertical angles are

C 22. Point

A 23. Coplanar

J 24. Line

F 25. Plane

D 26. Undefined Terms

- A. When two or more points lie on the same plane.
- B. Congruent
- C. Has location only; no length, width, or depth
- D. Point, Line, and Plane
- E. When two or more points lie on the same line.
- F. A flat surface that extends in all directions.
- G. A part of a line containing two endpoints, and all the points in between.
- H. A one-directional line
- I. Lines that form a 90° angle at their intersection.
- J. Extends indefinitely in two directions; has no thickness or width.
- K. The common endpoint of the two non-collinear rays that make up the sides of an angle.
- L. A figure formed by two rays with a common endpoint

	·			